Chapter 1: Set Theory

Terminology

<u>Set</u> :	A collection or group of distinguishable objects.	
<u>Element</u> :	An object in a set. (Symbol \in - "belongs to"). The <u>number of elements</u> in the set	
	A is denoted by $n(A)$.	
Universal Set	A set of all the elements under consideration for a particular context (also called	
	the sample space).	
Subset:	A set whose elements all belong to another set. (Symbol \subset)	
Complement:	omplement: All the elements of a universal set that do not belong to a subset of it.	
	The sum of the number of elements in a set and its complement is equal to the	
	number of elements in the universal set:	
	n(A) + n(A') = n(U)	
Empty Set:	A set with no elements. Notation $\{\}$ or \emptyset	
Disjoint Sets:	Two or more sets having no elements in common.	

When two sets A and B are disjoint, n(A or B) = n(A) + n(B)

The events that describe disjoint sets are **mutually exclusive**. They are two or more events that cannot occur at the same time.

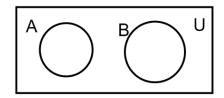
A **finite set** is a set with a countable number of elements. An **infinite set** is a set with an infinite number of elements.

Other Terminology

Natural Numbers = N = 1,2,3,4,5,...Whole Numbers = W = 0,1,2,3,4,5,...Integers = I = ...-3,-2,-1,0,1,2,3,...

Prime numbers:	divisors are 1 and itself
	number has to be larger than 1

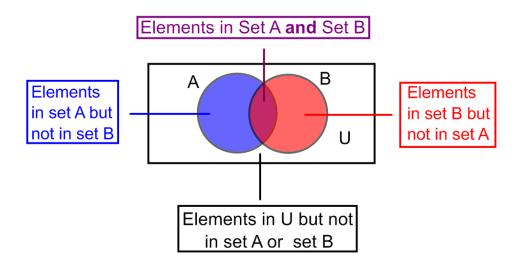
NOTE: 1 IS NOT PRIME!....1 IS ODD


Even Number: divisible by 2 Odd Numbers: Even +1

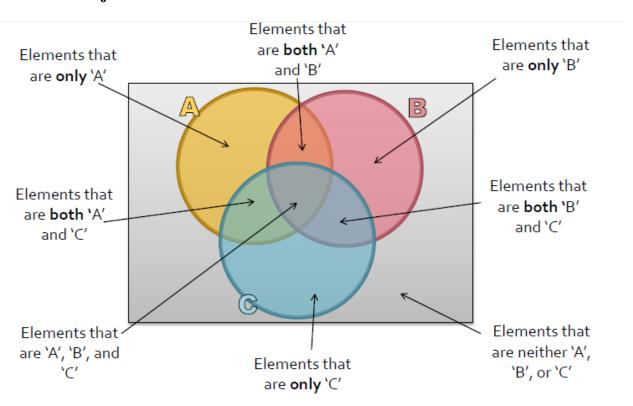
Know these symbols

Union (or): \cup Subse: \subset not a subset of: $\not\subset$ B only: B\A Is an element of: \in intersection (and): \cap empty set: {} or Ø A only: A\B the number in set A: n(A)

Exploring what different regions of a Venn Diagram Represent


1. Disjoint Sets

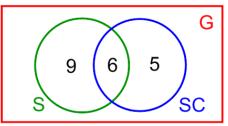
 $A \subset U$ $B \subset U$ A and B are <u>disjoint sets</u> because they do not share common elements.


 $n(A \cup B) = n(A) + n(B)$

2. Non-Disjoint Sets

To find the number of elements in A or B, you count the elements in each region of the diagram once.

 $\mathbf{n}(\mathbf{A} \cup \mathbf{B}) = \mathbf{n}(\mathbf{A}) + \mathbf{n}(\mathbf{B}) - \mathbf{n}(\mathbf{A} \cap \mathbf{B})$



3. Non-Disjoint Sets

 $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

Examples:

1. There are 28 students in a Grade 12 class. The number of students involved in sports and student council are illustrated in the Venn diagram. Use the diagram to answer the following questions:

- a) How many students are in both sports and student council?
- b) How many students are in sports but not in student council?
- c) How many students are in student council but not in sports?
- d) How many students are in sports?

- e) How many are in student council?
- f) How many students are in at least one of sports or student council?
- g) How many students are in neither sports nor student council?
- 2. There are 100 members of a country club. Of these members, 40 play tennis and 47 play golf. There are 25 members that do not play tennis or golf.
 - a) Determine how many members play both tennis and golf.
 - b) Determine how many members play tennis only.
 - c) Determine how many members only play golf.
- 3. There are 30 students in a class. 16 have iphones, 10 students have an ipad, and 6 students have both. How many students in the class have an iphone or an ipad?
- 4. Jason asked 100 people if they liked Pepsi or 7-UP.
 - 12 people didn't like either drink
 - 18 liked both Pepsi and 7-UP
 - 25 people liked only 7-UP

Determine how many people liked only Pepsi.

- 5. There are 36 students who study science. 14 study physics, 18 study chemistry, 24 study Biology, 5 study physics and chemistry, 8 study physics and biology, 10 study biology and chemistry, 3 study all three subjects.
 - (i) Determine the number of students who study Physics and Biology only.
 - (ii) Determine the number of students who study at least two subjects.
 - (iii) Determine the number of students who study biology only.
- 6. 40 members in a sports club were surveyed:
 - 2 play all three sports23 play ball hockey24 play tennis18 play golf14 play tennis and ball hockey8 play tennis and golf
 - 1 member makes the refreshments and does not play any sport

Determine the number of people who play ball hockey and golf.

- 7. In a survey of 55 people, the following results were recorded:
 - 13 people like Hawaiian pizza
 - 19 people like pepperoni pizza
 - 26 people like cheese pizza
 - 15 people do not like pizza
 - 5 people like Hawaiian pizza and pepperoni pizza, but not cheese pizza
 - 2 people like all types of pizza
 - 2 people like Hawaiian pizza and cheese pizza, but not pepperoni pizza Determine how many people like only cheese pizza.
- 8 #4 page 56