Math 2201 Practice Test No. 2 for Radicals Unit IV 2019---Exam Friday Nov 29, Period 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Which of these equations are true?
I. $\sqrt{18}= \pm 3 \sqrt{2}$
II. $\sqrt{18}=3 \sqrt{2}$
a. neither I nor II
b. II only
c. I and II
d. I only
2. Which of these equations are true?
I. $3 \sqrt{15}=\sqrt{135}$
II. $5 \sqrt{25}=25$
III. $\sqrt{32}=4 \sqrt{8}$
a. I and II
b. I only
c. II only
d. I, II, and III
3. Which number is not a mixed radical?
a. $7 \sqrt{46}$
b. $9 \sqrt{22}$
c. $\sqrt{19}$
d. $4 \sqrt{50}$
4. Which choice expresses each of these numbers as an entire radical?
$3 \sqrt{6}, 5 \sqrt{42}, 2 \sqrt{11}, 4 \sqrt[3]{27}$
a. $7.3,32.4,6.6,12$
b. $\sqrt{54}, \sqrt{1050}, \sqrt{44}, \sqrt[3]{1728}$
c. $\sqrt{18}, \sqrt{210}, \sqrt{22}, \sqrt[3]{108}$
d. $\sqrt{18}, \sqrt{67}, \sqrt{15}, \sqrt[3]{91}$
\qquad 5. Which choice lists these numbers in increasing order?
$4 \sqrt{8}, 2 \sqrt{35}, \sqrt{33}, 3 \sqrt{12}$
a. $2 \sqrt{35}, \sqrt{33}, 4 \sqrt{8}, 3 \sqrt{12}$
b. $\quad 3 \sqrt{12}, \sqrt{33}, 2 \sqrt{35}, 4 \sqrt{8}$
c. $\sqrt{33}, 3 \sqrt{12}, 4 \sqrt{8}, 2 \sqrt{35}$
d. $\sqrt{33}, 3 \sqrt{12}, 2 \sqrt{35}, 4 \sqrt{8}$
6. Which set contains like radicals?
a. $14 \sqrt{2}, 5 \sqrt{16},-\sqrt{8}, 21 \sqrt{6}$
b. $6 \sqrt{3}, \sqrt{12},-2 \sqrt{3}, \sqrt{27}$
c. $\sqrt{25},-9 \sqrt{15}, 5 \sqrt{2}, 3 \sqrt{5}$
d. $17(\sqrt[3]{64}), 10 \sqrt{4}, 7 \sqrt{16},-\sqrt{4}$
\qquad 7. Which is the simplest form of $-6 \sqrt{3}-4 \sqrt{3}-7 \sqrt{3}$?
a. $17 \sqrt{9}$
b. $-17 \sqrt{3}$
c. $-5 \sqrt{3}$
d. $17 \sqrt{27}$
8. Which is the simplest form of $-\sqrt{54}-\sqrt{6}-\sqrt{96}$?
a. $2 \sqrt{6}$
b. $-2 \sqrt{6}$
c. $-8 \sqrt{6}$
d. $-26 \sqrt{6}$
9. Which expression is the simplest form of $6 \sqrt{5} \cdot \sqrt{4}$?
a. $24 \sqrt{5}$
b. $12 \sqrt{5}$
c. $6 \sqrt{20}$
d. $30 \sqrt{2}$
10. Which expression is the rationalized form of $\frac{-7 \sqrt{76}}{\sqrt{8}}$?
a. $\frac{-7 \sqrt{38}}{2}$
b. $\frac{-7 \sqrt{608}}{8}$
c. $-7 \sqrt{\frac{19}{2}}$
d. $-\frac{7}{8} \cdot 4 \sqrt{38}$
11. Which restrictions apply to the variable in $\sqrt{15 x^{3}}$?
$\begin{array}{lllll}\text { I. }|x| \neq 0 & \text { II. } x \geq 0 & \text { III. } x>0 & \text { IV. } x \in \text { R } & \text { V. } x \in \text { N }\end{array}$
a. I, IV, and V
b. II and IV
c. I and IV
d. III and V
12. Which restrictions apply to the variable in $8 \sqrt{x^{4}}$?
I. $x \neq 0$
II. $x \geq 0$
III. $x>0$
IV. $x \in \mathrm{R}$
V. $x \in \mathrm{~N}$
a. I, III, and V
b. V
c. I, II, and IV
d. IV
13. What is the value of x in $\sqrt{x-11}=4$?
a. 5
b. 7
c. 27
d. 15
14. What is the value of x in $\sqrt[3]{x+30}=5$?
a. 95
b. 155
c. -15
d. 5
15. What is the value of x in $\sqrt{9 x+10}-6=2$?
a. $3 \frac{1}{3}$
b. $\frac{2}{3}$
c. 0
d. 6

Short Answer

16. Express $\sqrt{7500}$ as a mixed radical in simplest form.
17. Express $\sqrt[3]{832}$ as a mixed radical in simplest form.
18. Express $13 \sqrt{15}$ as an entire radical.
19. Expand the expression $\sqrt{3}(6-\sqrt{12})$.
20. A photograph has a width of $8 \sqrt{3} \mathrm{~cm}$ and an area of $15 \sqrt{72} \mathrm{~cm}^{2}$. Determine the length of the photograph.
21. State any restrictions on the variable, then simplify.
$\frac{-72 \sqrt{y^{9}}}{6 \sqrt{y^{3}}}$
22. State any restrictions on the variables, then multiply.
$3 \sqrt{x y} \cdot 5 \sqrt{x^{3}}$
23. State any restrictions on the variable, then multiply.
$(3 \sqrt{x}-1)(2 \sqrt{x}+7)$
24. The speed of a tsunami can be modelled by $S=356 \sqrt{d}$, where S is the speed in kilometres per hour and d is the average depth of the water in kilometres. Determine the average depth of the waves of a tsunami travelling at $150 \mathrm{~km} / \mathrm{h}$ to the nearest hundredth of a kilometre.

Problem

25. Rationalize each expression to compare the radical expressions. Show each step.
A. $\frac{\sqrt{7}}{\sqrt{3 x}}$
B. $\frac{14}{3 \sqrt{x}}$

Math 2201 Practice Test No. 2 for Radicals Unit IV 2019---Exam Friday Nov 29, Period 2 Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 4.1OBJ: 3.1 Compare and order radical expressions with numerical radicands. |3.2 Express an entire radicalwith a numerical radicand as a mixed radical. $\mid 3.3$ Express a mixed radical with a numerical radicand as anentire radical. TOP: Mixed and entire radicals KEY: radical
2. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 4.1OBJ: 3.1 Compare and order radical expressions with numerical radicands. 3.2 Express an entire radicalwith a numerical radicand as a mixed radical. $\mid 3.3$ Express a mixed radical with a numerical radicand as anentire radical. TOP: Mixed and entire radicals KEY: radical
3. ANS: C PTS: 1 DIF: Grade 1 REF: Lesson 4.1OBJ: 3.1 Compare and order radical expressions with numerical radicands. 3.2 Express an entire radicalwith a numerical radicand as a mixed radical. $\mid 3.3$ Express a mixed radical with a numerical radicand as anentire radical. TOP: Mixed and entire radicals KEY: radical
4. ANS: B PTS: 1 DIF: Grade 1 REF: Lesson 4.1OBJ: 3.1 Compare and order radical expressions with numerical radicands. | 3.2 Express an entire radicalwith a numerical radicand as a mixed radical. 3.3 Express a mixed radical with a numerical radicand as anentire radical. TOP: Mixed and entire radicals KEY: radical
5. ANS: C PTS: 1 DIF: Grade 11 REF: Lesson 4.1OBJ: 3.1 Compare and order radical expressions with numerical radicands. 3.2 Express an entire radicalwith a numerical radicand as a mixed radical. $\mid 3.3$ Express a mixed radical with a numerical radicand as anentire radical. TOP: Mixed and entire radicals KEY: radical
6. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 4.2OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. TOP: Adding and subtracting radicals KEY: radical
7. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 4.2
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. TOP: Adding and subtracting radicals KEY: radical
8. ANS: C PTS: 1 DIF: Grade 11 REF: Lesson 4.2OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. TOP: Adding and subtracting radicals KEY: radical
9. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 4.3OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. TOP: Mixed and entire radicals KEY: radical
10. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 4.3OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. |3.5 Rationalize the monomial denominator of a radical expression.
TOP: Mixed and entire radicals KEY: radical | rationalize the denominator
11. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 4.4OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. 3.6 Identify values of the variable for which the radical expression is defined.
TOP: Mixed and entire radicals KEY: radical |absolute value \mid restrictions
12. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 4.4
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variableradicands. | 3.6 Identify values of the variable for which the radical expression is defined.
TOP: Mixed and entire radicals KEY: radical \mid restrictions
13. ANS: C PTS: 1 DIF: Grade 11 REF: Lesson 4.6

OBJ: 4.1 Determine any restrictions on values for the variable in a radical equation. | 4.2 Determine, algebraically, the roots of a radical equation, and explain the process used to solve the equation. $\mid 4.3$ Verify, by substitution, that the values determined in solving a radical equation are roots of the equation. 14.5 Solve problems by modelling a situation with a radical equation and solving the equation.
TOP: Solving simple radical equations KEY: radical
14. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 4.6

OBJ: 4.1 Determine any restrictions on values for the variable in a radical equation. |4.2 Determine, algebraically, the roots of a radical equation, and explain the process used to solve the equation. $\mid 4.3$ Verify, by substitution, that the values determined in solving a radical equation are roots of the equation. $\mid 4.5$ Solve problems by modelling a situation with a radical equation and solving the equation.
TOP: Solving simple radical equations KEY: radical
15. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 4.6

OBJ: 4.1 Determine any restrictions on values for the variable in a radical equation.|4.2 Determine, algebraically, the roots of a radical equation, and explain the process used to solve the equation. $\mid 4.3$ Verify, by substitution, that the values determined in solving a radical equation are roots of the equation. $\mid 4.5$ Solve problems by modelling a situation with a radical equation and solving the equation.
TOP: Solving simple radical equations KEY: radical

SHORT ANSWER

16. ANS:
$50 \sqrt{3}$

PTS: 1 DIF: Grade 11 REF: Lesson 4.1
OBJ: 3.2 Express an entire radical with a numerical radicand as a mixed radical.
TOP: Mixed and entire radicals KEY: radical
17. ANS:
$4 \sqrt[3]{13}$
PTS: 1 DIF: Grade 11 REF: Lesson 4.1
OBJ: 3.2 Express an entire radical with a numerical radicand as a mixed radical.
TOP: Mixed and entire radicals KEY: radical
18. ANS:
$\sqrt{2535}$

PTS: 1 DIF: Grade 11 REF: Lesson 4.1
OBJ: 3.1 Compare and order radical expressions with numerical radicands. 3.2 Express an entire radical with a numerical radicand as a mixed radical. 3.3 Express a mixed radical with a numerical radicand as an entire radical. TOP: Mixed and entire radicals KEY: radical
19. ANS:
$6 \sqrt{3}-6$
PTS: 1 DIF: Grade 11 REF: Lesson 4.3
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands. TOP: Multiplying and dividing radicals KEY: radical
20. ANS:
$\frac{15 \sqrt{6}}{4} \mathrm{~cm}$

PTS: 1 DIF: Grade 11 REF: Lesson 4.3
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands. |3.5 Rationalize the monomial denominator of a radical expression.
TOP: Multiplying and dividing radicals KEY: radical
21. ANS:
$y>0 ; y \in \mathrm{R}$
$-12 y^{3}$
PTS: 1 DIF: Grade 11 REF: Lesson 4.4
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands. |3.5 Rationalize the monomial denominator of a radical expression. |3.6 Identify values of the variable for which the radical expression is defined.
TOP: Simplifying algebraic expressions involving radicals KEY: radical|restrictions
22. ANS:
$x, y \geq 0 ; x, y \in \mathrm{R}$
$15 x^{2} \sqrt{y}$
PTS: 1 DIF: Grade 11 REF: Lesson 4.4
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands. | 3.5 Rationalize the monomial denominator of a radical expression. | 3.6 Identify values of the variable for which the radical expression is defined.
TOP: Simplifying algebraic expressions involving radicals KEY: radical | restrictions
23. ANS:
$x \geq 0 ; x \in \mathrm{R}$
$6 x+19 \sqrt{x}-7$
PTS: 1 DIF: Grade 11 REF: Lesson 4.4
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands. | 3.5 Rationalize the monomial denominator of a radical expression. | 3.6 Identify values of the variable for which the radical expression is defined.
TOP: Simplifying algebraic expressions involving radicals KEY: radical|restrictions
24. ANS:
$d=0.18 \mathrm{~km}$
PTS: 1 DIF: Grade 11 REF: Lesson 4.5
OBJ: 4.2 Determine, algebraically, the roots of a radical equation, and explain the process used to solve the equation. | 4.3 Verify, by substitution, that the values determined in solving a radical equation are roots of the equation. TOP: Exploring radical equations KEY: radical

PROBLEM

25. ANS:

$$
\begin{array}{|l|l}
\hline \text { A. } \begin{array}{rlr}
\frac{\sqrt{7}}{\sqrt{3 x}} \cdot \frac{\sqrt{3 x}}{\sqrt{3 x}}=\frac{\sqrt{21 x}}{\sqrt{9 x^{2}}} & \text { B. } \frac{14}{3 \sqrt{x}}=\frac{14}{3 \sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}} \\
\frac{\sqrt{7}}{\sqrt{3 x}} \cdot \frac{\sqrt{3 x}}{\sqrt{3 x}}=\frac{\sqrt{21 x}}{3 x} & \frac{14}{3 \sqrt{x}}=\frac{14 \sqrt{x}}{3 \sqrt{x^{2}}} \\
\frac{\sqrt{7}}{\sqrt{3 x}} \cdot \frac{\sqrt{3 x}}{\sqrt{3 x}}=\frac{\sqrt{21} \sqrt{x}}{3 x} & \frac{14}{3 \sqrt{x}}=\frac{14 \sqrt{x}}{3 x} \\
\hline
\end{array} \\
\hline
\end{array}
$$

The restriction of both expressions is $x>0$ since x cannot be 0 or a negative number.
Since the denominators are the same, compare the numerators.
Since both numerators contain \sqrt{x} and $\sqrt{21}<14$, then $\frac{\sqrt{7}}{\sqrt{3 x}}<\frac{14}{3 \sqrt{x}}$.
PTS: 1 DIF: Grade 11 REF: Lesson 4.4
OBJ: 3.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands. | 3.5 Rationalize the monomial denominator of a radical expression. | 3.6 Identify values of the variable for which the radical expression is defined.
TOP: Simplifying algebraic expressions involving radicals
KEY: radical | restrictions | rationalize the denominator

