\qquad

Part I: Multiple Choice. Place the correct answer on the space provided.

1. The first three members of a sequence are shown. How many dots are in the fourth member of the sequence?

a. 30
b. 16
c. 14
d. 7
2. State a counterexample to disprove the following conjecture: A hot air balloon is a device that floats in the air.
a. Hot air balloons are red.
b. Helium balloons also float.
c. A car is also a device.
d. Hot air is also warm.

Part II: Answer each question in the space provided. Show ALL workings to receive full marks!
3. Give one counterexample that shows the conjecture is false. ($\mathbf{1}$ mark)

In a coordinate plane, if the y-coordinate of a point is positive, then the point is in the first quadrant.
4. Give a counterexample to the following conjecture. (1 mark)

All mammals cannot fly.
5. Give a counterexample to the following conjecture. (1 mark)

The sum, $2^{n}+1$ where n is a natural number, is always a prime number.

Use inductive reasoning to find the next two numbers in each pattern. (2 mark)
6. $16,18,20,22, \ldots$, ($\mathbf{2}$ mark)
7. $2,4,8,16$, \qquad (2 mark)

From the given true statements, make a valid conclusion:
8. If there is no more milk, Rita will go to the store. (1 mark)

There is no more milk.
9. If the slipper fits, she is the one. ($\mathbf{1}$ mark)

Cinderella fits in the slipper.
10. Use deductive reasoning to show that the difference of two even numbers is even. (4 mark)
11. Use deductive reasoning to prove the conjecture: The square of an odd integer is always an odd integer. (Hint: Represent the original integer as $2 n+1$) ($\mathbf{4}$ mark)

Decide if the argument is valid or invalid. If the argument is valid, tell which rule of logic is used. If the argument is invalid, tell why.
12. If a figure is a quadrilateral, then it is a polygon. ($\mathbf{2} \mathbf{~ m a r k}$)

I have drawn a figure that is a polygon.
Therefore, the figure I drew is a quadrilateral.
13. The following proof seems to show that $2=1$. Examine this proof, and determine where the error in reasoning occurred. (2 mark)

Step 1: Let $\mathrm{a}=\mathrm{b}$
Step 2: $\mathrm{a}^{2}=\mathrm{ab} \quad$ Multiply by a

Step 3: $a^{2}-b^{2}=a b-b^{2}$	Subtract b^{2}
Step 4: $(a-b)(a+b)=b(a-b)$	Factor
Step 5: $a+b=b$	Divide by $(a-b)$
Step 6: $b+b=b$	$a=b$
Step 7: $2 b=b$	Simplify
Step 8: $2=1$	Divide by b

\qquad
14. Use inductive reasoning to make a conjecture for the magic trick shown below. Then use deductive reasoning to prove your conjecture.
a) Inductive Reasoning ($\mathbf{2}$ points): Fill in case $\mathbf{1}$ and case 2

	Case 1	Case 2	General Case
Step 1: Choose a number			
Step 2: Double the number			
Step 3: Add 6 to the result			
Step 4: Divide the sum by 2			
Step 5: Subtract 3 from the result			

b) Conjecture ($\mathbf{1}$ mark):
c) Deductive Reasoning (2 marks): Use General case section in above chart. (Hint: Use n for the original number.)

Answer Section

1. ANS: B
2. ANS: B
3. ANS:

Answers will vary.
The point $(-4,5)$ is not in the first quadrant.
4. ANS:

Answers will vary.
For example,
bats are mammals that can fly.
5. ANS:

Answers will vary. For example, when $n=3$, the expression gives 9 .
6. ANS:

24, 26
7. ANS:

32, 64
8. ANS:

Rita will go to the store.
9. ANS:

Cinderella is the one.
10. ANS:

Let $2 x$ and $2 y$ represent any two even numbers. Their difference is $2 x-2 y$, or $2(x-y)$. Since 2 is a factor of this difference, $2 x-2 y$ is even.
11. ANS:
$(2 n+1)^{2}=4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1$, which is an odd integer.
12. ANS:
invalid; converse error (The figure could have been a triangle.)
13. ANS:

Step 5: Divided by zero since $\mathrm{a}=\mathrm{b}$ and then $\mathrm{a}-\mathrm{b}=0$
14. ANS:
a. Answer will vary
b. The result will be the original number.
c. Let $n=$ the number.

Then double the number is $2 n$.
Adding 6 yields $2 n+6$,
dividing this sum by 2 gives $\frac{2 n+6}{2}=\frac{2(n+3)}{2}$, or $n+3$.
Finally, subtracting 3 yields $(n+3)-3=n$.
Therefore, for any number n, the result is the original number.

