Eastern
 School District

 Mathematics 2201

 Mathematics 2201 Common Mathematics Assessment

Sample 2013

Name:
Mathematics
Teacher:

28 Selected Response
28 marks
13 Constructed Response
42 marks

FINAL
70 Marks
TIME: 2 HOURS

NOTE

Diagrams are not necessarily drawn to scale.

FORMULAE

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$$
\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \quad z=\frac{x-\mu}{\sigma} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Selected Response: Choose the appropriate response on the answer sheet or SCANTRON.

1. Lisa draws four parallelograms and measures all sides. She writes the statement "The opposite sides of a parallelogram are equal" in her notebook. Which term best describes her statement?
(A) conjecture
(B) counterexample
(C) deductive reasoning
(D) inductive reasoning
2. What is the missing seventh term in the given sequence? $\{1,1,2,3,5,8, \underset{\sim}{?}, 21\}$
(A) 11
(B) 12
(C) 13
(D) 14
3. Which figure is a counterexample to the statement below?
"The perimeter of a rectangle is never an odd number."
(A)

(B)

(C)

(D)

4. If $\angle 1=\angle 2$ and $\angle 1=\angle 3$, which property proves that $\angle 2=\angle 3$?
(A) commutative
(B) supplementary angles
(C) transitive
(D) vertically opposite angles
5. What is the sum of the interior angles of a convex polygon with 14 sides?
(A) 2160°
(B) 2340°
(C) 2520°
(D) 2880°
6. An incorrect solution is provided to the question below. In which step did the first error occur?

Question: Given $C H \| E G$ and $\angle 1=120^{\circ}$, what is the measure of $\angle 7$?

Solution: Step 1: $\angle 1=\angle 3$
Step 2: $\angle 3=\angle 6$
Step 3: $\angle 7=180^{\circ}-\angle 6$
Step 4: $\angle 7=180^{\circ}-120^{\circ}=60^{\circ}$
(A) 1
(B) 2
(C) 3
(D) 4
7. What is the length of side b ?

(A) 8.9
(B) $\quad 11.1$
(C) 18.7
(D) 25.3
8. Which expression is equal to $\sin Q$?
(A) $\frac{q}{r \sin R}$
(B)
$\frac{r}{q \sin R}$
(C) $\frac{q \sin R}{r}$
(D) $\frac{r \sin R}{q}$
9. Simplify completely: $\quad 12 \sqrt{40}-7 \sqrt{10}$
(A) $5 \sqrt{30}$
(B) $\quad 17 \sqrt{10}$
(C) $19 \sqrt{30}$
(D) $41 \sqrt{10}$
10. Simplify completely: $\frac{5 \sqrt{15}}{2 \sqrt{6}}$
(A) $\frac{5 \sqrt{10}}{4}$
(B) $\frac{15 \sqrt{10}}{4}$
(C) $\frac{5 \sqrt{90}}{12}$
(D) $\frac{10 \sqrt{90}}{24}$
11. Simplify completely: $\sqrt{27 x^{2}}$
(A) $3 x \sqrt{3}$
(B) $3 x^{2} \sqrt{3}$
(C) $9 x \sqrt{3}$
(D) $\quad 9 x^{2} \sqrt{3}$
12. Write $2 y \sqrt[3]{3 y}$ as an entire radical.
(A) $\sqrt[3]{12 y^{3}}$
(B) $\sqrt[3]{24 y^{2}}$
(C) $\sqrt[3]{24 y^{4}}$
(D) $\sqrt[3]{54 y^{4}}$
13. Brad was asked to simplify $2 \sqrt[3]{64 x^{5}}$ but did not complete a correct solution. Which step contains his first error?

Solution: \quad Step 1: $2 \cdot \sqrt[3]{64} \cdot \sqrt[3]{x^{5}}$
Step 2: $2 \cdot 8 \cdot \sqrt[3]{x^{3}} \cdot \sqrt[3]{x^{2}}$
Step 3: $2 \cdot 8 \cdot x \cdot \sqrt[3]{x^{2}}$
Step 4: $18 x \sqrt[3]{x^{2}}$
(A) 1
(B) 2
(C) 3
(D) 4
14. What are the restrictions on the variable for $\frac{1}{\sqrt{x-1}}$?
(A) $\quad x \leq 1$
(B) $\quad x \geq 1$
(C) $\quad x<1$
(D) $\quad x>1$
15. Which set of data has the lowest standard deviation?
(A) $\quad\{0.1,0.2,0.3,0.4,0.5\}$
(B) $\quad\{3.5,3.6,3.7,3.8,3.9\}$
(C) $\{4,4,5,5,6\}$
(D) $\quad\{9,9,9,9,9\}$
16. The ages of participants in a curling bonspiel are normally distributed with a mean of 45 years and a standard deviation of 9 years. What percent of the curlers are between 36 and 54 years of age?
(A) 34%
(B) 68%
(C) 95%
(D) 99%
17. The heights of all students in a class were measured. It was later discovered that the tape measure used was inaccurate and 5 mm had to be added to each person's height. Which calculation would stay the same based on the new height measures?
(A) central tendency
(B) mean
(C) median
(D) standard deviation
18. What are the domain and range for $y=3(x-1)^{2}+4$?
(A) $\quad x \in R$ and $y \leq 4$
(B) $\quad x \in R$ and $y \geq 4$
(C) $\quad x \leq 1$ and $y \in R$
(D) $\quad x \geq 1$ and $y \in R$
19. A quadratic function has an x-intercept at $(-7,0)$ and an axis of symmetry at $x=-1$. What is the other x-intercept?
(A) $\quad(-13,0)$
(B) $\quad(-4,0)$
(C) $\quad(5,0)$
(D) $(9,0)$
20. If $(-1,3)$ is the vertex of $y=2 x^{2}+b x+5$, what is the value of \boldsymbol{b} ?
(A) -12
(B) $\quad-4$
(C) 4
(D) 12
21. The function $y=x^{2}+6 x+1$ has an axis of symmetry at $x=-3$. Which graph best models this function?
(A)

(B)

(C)

(D)

22. Which represents a quadratic function with no x-intercepts?
(A) $\quad y=-(x-1)^{2}$
(B) $\quad y=-(x-1)^{2}+3$
(C) $y=(x+1)^{2}-3$
(D) $\quad y=(x+1)^{2}+3$
23. A gardener has 120 m of fencing to mark off a rectangular vegetable garden. Which function could be used to determine the dimensions that will result in the maximum area?

(A) $\quad A=x(x-60)$
(B) $\quad A=x(x-120)$
(C) $\quad A=x(60-x)$
(D) $\quad A=x(120-x)$
24. Which function has zeros of -3 and 7 ?
(A) $\quad f(x)=(x-3)(x-7)$
(B) $\quad f(x)=(x-3)(x+7)$
(C) $\quad f(x)=(x+3)(x-7)$
(D) $\quad f(x)=(x+3)(x+7)$
25. What are the roots of the quadratic equation $x^{2}+6 x-16=0$?
(A) $\quad x=-8, x=-2$
(B) $\quad x=-8, x=2$
(C) $\quad x=8, x=-2$
(D) $\quad x=8, x=2$
26. Which has a unit rate of $\$ 0.16 /$ apple?
(A) 20 apples for $\$ 3.00$
(B) 25 apples for $\$ 4.25$
(C) 30 apples for $\$ 4.95$
(D) 35 apples for $\$ 5.60$
27. The pentagon shown is transformed by a scale factor of $\frac{1}{4}$. What is the length of the image of side AB ?

(A) 3 cm
(B) 9 cm
(C) 15 cm
(D) 48 cm
28. A partially inflated heart-shaped balloon is 15 cm wide and has a volume of $1600 \mathrm{~cm}^{3}$. If air is added until the balloon is 30 cm wide, what is the new volume?
(A) $3200 \mathrm{~cm}^{3}$
(B) $6400 \mathrm{~cm}^{3}$
(C) $9600 \mathrm{~cm}^{3}$
(D) $12800 \mathrm{~cm}^{3}$

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.
29. Use both inductive and deductive reasoning to show that the sum of two odd integers is an even number.

Inductive Reasoning
Deductive Reasoning
30. Find the measure of each indicated angle. Justify your answer.

Angle Measure Justification
\qquad
$x=$ \qquad
$y=$ \qquad
\qquad
$z=$ \qquad
\qquad
31. Use either a paragraph or two-column format to complete the given proof:

32. Peter uses exactly 100 m of string to stake out the triangular plot shown in his back garden. Find the measures of all three angles, to the nearest degree.

33. Simplify: $\quad(3 \sqrt{2}-\sqrt{10})^{2}$

3 marks
34. State the restrictions on x, solve the equation, and check for extraneous roots.

4 marks $4-\sqrt{2 x+1}=9$
\qquad
Solution:
35. In a pre-election survey in St. John's, 32\% of those surveyed were undecided about their choice for mayor. The survey is considered accurate within 8 percentage points, 99 times out of 100 . If there are 102000 eligible voters in St. John's, state the range of the number of people who are undecided and the confidence level.
\qquad
Confidence Level
36. A manufacturer produces tires that have an average thickness of 179 mm , with a 3 marks standard deviation of 0.9 mm . To be classified as "supreme quality", tires must have a thickness between 177.8 mm and 180.7 mm . What percent, to the nearest whole number, of the total production can be rated as "supreme quality" tires?
37. A model rocket is launched from its launch pad which is 15 m above the ground. It takes 2 seconds for the rocket to reach a maximum height of 35 m .
Algebraically determine the quadratic function in the form $y=a(x-h)^{2}+k$, that models the path followed by the rocket, and use it to determine the height of the rocket at 3.5 s .
\qquad
Height \qquad
38. Algebraically determine the vertex and \mathbf{x}-intercepts for the function $y=-x^{2}-4 x+5$. Sketch the graph, labelling all key points.

39. Solve the given equation. State the solution(s) in exact form. 3 marks $12 x=-5 x^{2}-1$
40. Use a quadratic function to model and solve the given problem:

A landscaper is designing a $6 m$ by $8 m$ rectangular garden that will then be surrounded by a uniform border of crushed stone. She has enough crushed stone to cover $72 \mathrm{~m}^{2}$. What is the width of the border if she uses all of the crushed stone?

41. Nicole designed a rectangular crest that was 8 cm by 10 cm for her school's jacket. The crest was then enlarged to create a poster that had an area of $980 \mathrm{~cm}^{2}$. What are the dimensions of the poster?

Name: \qquad
Mathematics Teacher: \qquad

1.	A	B	C	D	15.	A	B	C	D
2.	A	B	C	D	16.	A	B	C	D
3.	A	B	C	D	17.	A	B	C	D
4.	A	B	C	D	18.	A	B	C	D
5.	A	B	C	D	19.	A	B	C	D
6.	A	B	C	D	20.	A	B	C	D
7.	A	B	C	D	21.	A	B	C	D
8.	A	B	C	D	22.	A	B	C	D
9.	A	B	C	D	23.	A	B	C	D
10.	A	B	C	D	24.	A	B	C	D
11.	A	B	C	D	25.	A	B	C	D
12.	A	B	C	D	26.	A	B	C	D
13.	A	B	C	D	27.	A	B	C	D
14.	A	B	C	D	28.	A	B	C	D

