\qquad
Part I: Place the letter of the correct answer in the space provided. (30 mks)

1. What is the leading coefficient of the polynomial: $y=-5 x^{3}+4 x-7$?
2. \qquad
A) -7
B) -5
C) 3
D) 4
3. What is the end behavior of the graph of: $y=4 x^{2}-3 x+2$?
4. \qquad
A) Q2 to Q1
B) Q3 to Q1
C) Q2 to Q4
D) Q3 to Q4
5. What is the y-intercept of $y=2 x^{3}+5 x^{2}-6 x+1$?
6.

A) -1
B) 0
C) 1
D) 2
4. How many possible x-intercepts can $f(x)=-3 x^{3}-2 x^{2}+4 x-5$ have?
4. \qquad
A) 0
B) 0,1 , or 2
C) $0,1,2$, or 3
D) 1, 2, or 3
5. Determine the leading coefficient of this polynomial function:
5.

$$
f(x)=4 x-2^{3}+x
$$

A) 4
B) -2
C) 1
D) 5
6. From which quadrants does the graph of $f(x)=-2 x^{3}-7 x+3$ extend?
6. \qquad
A) II to I
B) III to I
C) II to IV
D) III to IV
7. How many turning points can a cubic polynomial have?
7. \qquad
A) 0,1 , or 2
B) 1, 2, or 3
C) 0 or 2
D) 2
8. What is the range of the function $y=f(x)$ shown in the graph below?
8. \qquad
(A) $\quad\{y \mid y \leq-2, y \in R\}$
(B) $\quad\{y \mid y \geq-2, y \in R\}$
(C) $\quad\{y \mid y \leq 2, y \in R\}$
(D) $\quad\{y \mid y \geq 2, y \in R\}$

9. Determine the equation of this polynomial function:
9. \qquad

A) $f(x)=-x^{2}-3 x-1$
B) $g(x)=x^{2}-2 x+1$
C) $h(x)=-x^{3}-2 x^{2}+1$
D) $j(x)=x^{3}+2 x$
10. What is the maximum number of x-intercepts that a polynomial
10. \qquad function of degree 2 will have?
A) 0
B) 1
C) 2
D) 3
11. What is the degree of the polynomial $y=2 x-4$?
11.
A) 0
B) 1
C) 2
D) 4
12. What is the domain of $y=x^{2}-4 x+1$?
12. \qquad
A) $\{x \mid x \in R\}$
B) $\{x \mid x \geq 1, x \in R\}$
C) $\{x \mid x \geq 2, x \in R\}$
D) $\{x \mid x \geq-3, x \in R\}$
13. Which function passes through the point $(1,-7)$?
13. \qquad
(A) $\quad f(x)=-x^{3}-3 x^{2}+x-4$
(B) $\quad f(x)=-x^{3}-2 x^{2}+x-7$
(C) $\quad f(x)=x^{3}+2 x^{2}-4$
(D) $\quad f(x)=x^{3}+3 x^{2}-7$
14. Which graph best represents a function with the characteristics listed below?
14.

- Three x-intercepts
- Extending from Quadrant II to Quadrant IV
(A)

(B)

(C)

(D)

15. Given the table, the scatter plot and the curve of best fit of the polynomial $f(x)$,
16. \qquad what is the value of $f(5)$?

	X
Y	
2	5
4	24
6	12
8	0
10	23

(A) 2
(B) 9
(C) 18
(D) 20

Part II: Complete each question in the space provided. (35 mks)

1. Determine the following characteristics of each function:
a) $f(x)=-4 x^{3}+2 x^{2}-x+1$
b) $f(x)=5 x-2$
number of possible x-intercepts \qquad y-intercept \qquad domain \qquad range \qquad
number of possible turning points \qquad end behaviour \qquad number of possible x-intercepts \qquad
y-intercept \qquad domain \qquad
range \qquad
number of possible turning points \qquad end behaviour \qquad

Degree \qquad
Sign of leading coefficient \qquad
Constant term of function \qquad
End behaviour \qquad
Domain \qquad
Range \qquad
b)

Degree \qquad
Sign of leading coefficient \qquad
Constant term of function \qquad
End behaviour \qquad
Domain \qquad
Range \qquad
3. It takes Karen and Jessica 6 minutes to collect their school's recyclables when they work together. If Karen works by herself it will take her 5 minutes less than Jessica, if Jessica collects the recyclables by herself.
Set up a rational equation to model the situation and use it to algebraically determine how long it would take Karen to collect the recyclables if she works alone.
(7 mks)
4. Sketch two possible graphs that are different, yet are both cubic functions with
negative leading coefficients and negative y-intercepts. Explain why the graphs you have sketched are different.
(4 mks)

Graph 1:

Graph 2:

